

CONSTRUCTION MECANIQUE

SEQUENCE 6

Energétique Activité 7

Objectifs de l'activité

- → **Dimensionner** une section de câble électrique.
- → **Calculer** le coût d'une consommation annuelle d'électricité.

L'étude porte sur un palan utilisé en imprimerie industrielle pour déplacer des rouleaux de papier.

On ne s'intéresse qu'à l'élévation d'un rouleau. La mise en mouvement est assurée par un motoréducteur qui se compose d'un <u>moteur</u> alimenté par un courant triphasé et d'un <u>réducteur</u> à engrenages.

On donne:

\rightarrow	Masse à	vide c	de la	partie	mobile du	ı palan	$: M_1 = 1,4 t$
---------------	---------	--------	-------	--------	-----------	---------	-----------------

→ Hauteur d'élévation des rouleaux : H = 10 m

→ Nombre quotidien de manutentions de rouleaux : k = 8 j⁻¹

 \rightarrow Rendement moteur : $\eta_{\text{moteur}} = 0.86 \mid \cos \varphi = 0.80$

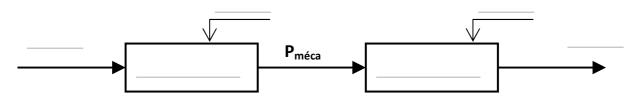
 \rightarrow Masse d'un rouleau de papier : M_2 = 2,5 t

→ Durée pour élever un rouleau sur la hauteur H : t = 18 s

→ Réseau électrique : 3 x 400 V (triphasé)

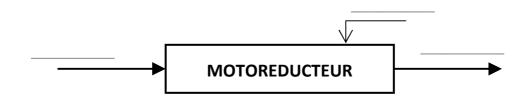
 \rightarrow Rendement réducteur à engrenages : $\eta_{red} = 0.76$

→ Longueur de câble électrique entre le moteur et le panneau général : L = 143 m


→ Tarif énergie électrique : n = 0,20 €.kWh⁻¹

→ L'entreprise fonctionne 5 jours par semaine, 50 semaines par an.

 \rightarrow Champ de pesanteur : g = 10 m.s⁻²


Remarque : pour les calculs, on attend une <u>formule analytique</u> avant les applications numériques.

 $\mathbf{Q1}$ – Compléter le schéma bloc <u>détaillé</u> du motoréducteur en y plaçant les informations suivantes : P_{elec} , P_{utile} , MOTEUR, REDUCTEUR, η_{moteur} , η_{red} .

Q2 – Calculer en kg la masse <u>totale</u> M mise en mouvement lorsqu'un rouleau	est levé.
	M =
Q3 – Calculer en <i>J</i> l'énergie <i>E</i> nécessaire pour que le palan élève un rouleau à	la hauteur H.
	E =
Q4 – Calculer en <i>kW</i> la puissance utile <i>P_{utile}</i> correspondante compte tenu de la	a durée du mouvement t.
	P _{utile} =
Q5 – Calculer à 10^{-2} près le rendement global η_{global} du motoréducteur (systèn	ne « moteur + réducteur »).
	η _{global} =
Q6 – Calculer à 10 ⁻¹ près en <i>kW</i> la puissance électrique <i>Pelec</i> consommée par	le moteur.
	P _{elec} =

Q7 – Compléter le schéma bloc global du motoréducteur (y porter toutes les informations disponibles).

Q8 – Montrer que l'intensité électrique du courant d'alimentation de	u moteur vaut I = 60 A.
On donne plus loin deux tableaux reliant la section des câbles électriet le $\cos \phi$ de la machine alimentée.	ques, leur longueur, l'intensité du courar
Q9 – Indiquer le tableau à considérer (T1 ou T2) en précisant le critè	re qui permet de choisir.
Tableau à retenir pour l'analyse : ☐ T1 ☐ T2	
Justification :	
Q10 – Donner en mm² la section qu'il convient de retenir.	
Justification :	Section =
Q11 – Calculer en € le coût <u>annuel</u> de l'énergie électrique dépensée	pour les montées de rouleaux.

tension 230V ,monophasé, cos(φ)=1 , Chute de tension = 3 % , câble en cuivre																
intensité	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	T1
Α	mm²	mm²	mm²	mm²	mm²	mm²	mm²									
2,17	100	170	270	410	685											
4,35	50	80	130	200	340	545	855				MARKE	indos	ginee	room		
6,52	30	55	85	130	225	360	570	800	Nati		VV VV VV	Jauer	ginee	r.com		
8,70	27	40	65	100	170	270	425	600	855							
10,87	22	35	50	80	135	215	340	480	685	960						
13,04	19	30	45	65	110	180	285	400	570	800						
15,22	16	25	40	55	95	155	240	340	490	685	930					
17,39		23	35	50	85	135	210	295	425	600	215					
19,57		20	32	47	78	120	190	265	380	535	725	915				longueur
21,74			29	43	70	110	170	240	340	480	650	825				de câble
26,09			24	36	59	93	145	200	285	400	545	685	860			maximale
30,43				31	51	80	125	170	245	345	465	590	735	910		(m) pour
34,78					45	70	105	150	215	300	410	515	645	795		une
39,13					40	63	97	135	190	265	365	460	575	710	920	puissance
43,48					36	57	88	120	170	240	325	410	515	635	825	et une
52,17						47	73	100	140	200	270	345	430	530	690	section de câble
60,87						41	63	88	120	170	235	295	370	455	590	données
69,57							55	75	105	150	205	255	320	395	515	uoc.s
78,26							49	69	97	135	180	230	285	355	460	
86,96								62	88	120	160	205	255	320	410	
108,70			Li	mi	te				70	98	130	165	205	255	330	
130,43										82	110	130	170	210	275	
152,17	d	'èc	ha	utt	em	ner	it				95	115	145	180	235	
173,91											83	100	130	160	205	
195,65												93	115	140	180	
217,39													100	125	165	

tension 400V ,triphasé ,cos(φ)=0,8 , Chute de tension = 3 % , câble en cuivre																		
intensité	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	T2		
Α	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	mm²	• •		
2,71	205	340	545	815														
3,61	150	255	410	610														
4,51	120	205	325	485	800				ya ka									
5,41	100	170	270	405	670													
6,31	90	145	230	350	570	910												
7,22	75 130 200 300 500 790 <u>www.jadengineer.com</u>																	
8,12	70	115	180	270	445	705												
9,02	60	100	160	240	400	635	970											
10,83	50	85	135	200	335	525	805				A SA					longueur		
12,63	45	70	115	170	285	450	690	945								maximale		
14,43	40	65	100	150	250	395	605	825								de câble		
16,24	35	55	90	135	220	350	535	735					2500			(m) pour		
18,04		50	80	120	200	315	485	660	910							une		
21,65		40	65	100	165	260	400	550	760							puissance et une		
25,26			55	85	140	225	345	470	650	870	000					section de		
28,87			50	75	125	195	300	410	570	760	980					câble		
32,48				65 60	110 95	170 155	265	365 325	505 455	675 610	870 785	940				données		
36,08 45,11				00	75	125	190	260	360	485	625	750	885					
54,13					13	100	155	215	300	405	520	625	740	855				
63,15						85	135	185	255	345	435	535	635	735	870			
72,17		Li	imit	e		0.5	115	160	225	300	390	465	550	640	760			
81,19	-11-4	_		_	4		105	145	200	270	345	415	490	570	675			
90,21	a e	ecna	uff	eme	ent		95	130	180	240	310	375	440	510	605			
108,25							The Section Section 1	105	150	200	260	310	365	425	505			
126,30								meeskalmilli	125	170	220	265	315	365	430			